Multiscale Modeling of Pseudomonas Aeruginosa Swarming.
نویسندگان
چکیده
Experiments have shown that wild type P. aeruginosa swarms much faster than rhlAB mutants on 0.4% agar concentration surface. These observations imply that development of a liquid thin film is an important component of the self-organized swarming process. A multiscale model is presented in this paper for studying interplay of key hydrodynamical and biological mechanisms involved in the swarming process of P. aeruginosa. This model combines a liquid thin film equation, convection-reaction-diffusion equations and a cell-based stochastic discrete model. Simulations demonstrate how self-organized swarming process based on the microscopic individual bacterial behavior results in complicated fractal type patterns at macroscopic level. It is also shown that quorum sensing mechanism causing rhamnolipid synthesis and resulting liquid extraction from the substrate lead to the fast swarm expansion. Simulations also demonstrate formation of fingers (tendrils) at the edge of a swarm which have been earlier observed in experiments.
منابع مشابه
Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids
Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginos...
متن کاملNovel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation
Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that ...
متن کامل12-Methyltetradecanoic acid, a branched-chain fatty acid, represses the extracellular production of surfactants required for swarming motility in Pseudomonas aeruginosa PAO1.
Pseudomonas aeruginosa is known to produce surfactants that are involved in its swarming motility behavior, such as rhamnolipids and their precursors-3-(3-hydroxyalkanoyloxy)-alkanoic acids (HAAs). In P. aeruginosa PAO1, swarming motility is inhibited by some fatty acids, including branched-chain fatty acids and unsaturated fatty acids. In the present study, addition of 12-methyltetradecano...
متن کاملRhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa.
Pseudomonas aeruginosa is capable of twitching, swimming, and swarming motility. The latter form of translocation occurs on semisolid surfaces, requires functional flagella and biosurfactant production, and results in complex motility patterns. From the point of inoculation, bacteria migrate as defined groups, referred to as tendrils, moving in a coordinated manner capable of sensing and respon...
متن کاملCo-Swarming and Local Collapse: Quorum Sensing Conveys Resilience to Bacterial Communities by Localizing Cheater Mutants in Pseudomonas aeruginosa
BACKGROUND Members of swarming bacterial consortia compete for nutrients but also use a co-operation mechanism called quorum sensing (QS) that relies on chemical signals as well as other secreted products ("public goods") necessary for swarming. Deleting various genes of this machinery leads to cheater mutants impaired in various aspects of swarming cooperation. METHODOLOGY/PRINCIPAL FINDINGS...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematical models & methods in applied sciences : M3AS
دوره 21 Suppl 1 شماره
صفحات -
تاریخ انتشار 2011